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An examination la made of relationahlpa among several approaches to

analytical turbulence theory: approximation by finity sets of moments,

renormallzed perturbation theory, decimation under symmetry constraints,

renormalization-group methods, and the upper-bounding of transport under

integral constraints. Moat of the dlscumion aasumes Isotropic turbulence.

Decimation under symmetry constraints play-a a unifying role. [t promiom a

rational basio for renorrnallzed perturbation theory ●nd provldeo Ilnko to the

other named approache.
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‘Cormultmt, Theoretical Dlvlalon and C’.inter for Nonllnear Stuctiet, LOO
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1. INTRCN3UCTION

The basic hope of

large and complicated

statistical mechanics is that the overall behavior of

systems can be disentangled from the details of their

dynamics to some adequate approximation. Navier-Stokes (N-S) turbulence is

a particularly challenging candldete oystem. The dynamica are highly

nonlinear and unstable and the atatistlcal states of physical relevance differ

strongly from the absolute equilibrium for which classical methods of

.
statistical mechanics are moat power ful.1 A combined consequence of

nonlinearity and dlmipative nonequilibrium is the appearance of plastically

ordered structures in thg midst of the rarldo, rmess traditionally assigned to

turbulence.

This combination of order and randomness is perhaps thn most perplexing

feature of turbulence for theorists. There is a fundamental dilemme

concerning honesty of representation. If structures are guessed at the star:

(whether the guese is shear layers, homeshoe vortices, smoke rings, {,r

whatever), there is danger that tk- subsequent theoretical conatructlon mey

have its moat Inlportant predlctiona built in. If a neutral underlying

reprewmtatlon 10 ,;dopted, like uncorrelated Fourier moden, the danger la that

the effects of characterlatlc structures of the roa.1 flow may be totally lost.

The present auaewmant la

statistical turbulence theory!

matly In the context of an Ideal lzed part of

attempta to treat Iaotroplc turbulence by

analytical procedure applled to the N-S equation. Here the r~~ resent atlon IEI

all too honest! typically ● neutral Gauaulan otatlstlcal state la aa.aumed at an

Inltlal time and then the N-S equation la awltched on. The analytical

approaches are r(toatly bated on truncation of one or another aerlea or

sequence, Thereby tltay fgce the embarraotiment that turbulence at high

Reynolds numbers off em no obvloua small expanalon parameter by which to
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justify the truncation.

The approaches discussed in thin paper are direct moment approximations

(truncation of a mome,~t representation of the joint probability

distribution),z-l” renormalized perturbation theory,l 1-17 decimation under

symmetry constraints, 7 renormalization-group methode,18-32 and the upper-

bounding of transport under integral constraints.33-36 Decimation under

symmetry constraints plays a central role in the discussion. In this approach

sbme subset of the totality of degrees of freedoln is foilowed by eixplicit

equations of motion, whiie the effects of ail other modes (the implicit

modes) are expressed by a constrained stochastic forcing in the equations for

the explicit modes. The constraints express the statistical symmetries among

or within classes of modes.

The expiicit set of modes may be formed by choosing a few sample

modes in each dense neighborhood of wavevector space. A smail parameter

thereby arises, namely the ratio of sample size to total neighborhood

population. In tt,e limit where this ratio goes to zero (strong decimation), the

imposition of a basic symmetry constraint yieids the direct-interaction

approximation. Higher approximations mise if successively more symmetry

constraints are imposed. They are related to renormnlized perturbation theory

approximation but, in contr mat to the iattm, are expected to form a

convergent sequence,

Instead, the explicit set of modes may be all the modes beiow a cutoff

wavenumber and the implicit set all modes a~ove the cutoff. In this case the

symmetry constraint expreoa an extrapolation which reiates moments of the

implicit modes to those of the expiici!, moder), The resuit is a sequence of

aubgrid-scale representations. If thio io done for an infinite Kolmogorov

inertiai range, the extrapolation simply expreeaeo the Koimogorov acaiing of
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moments. The resulting nonperturbative analytical framework is related to

renormalization-group approaches.

Finally, if the imposed symmetry constraints

integral properties, the resulting approximatitms are

are limited to overall

similar in spirit to the

upper-bounding analysis for turbulent transport developed by 6u8se, Howard,

Malkus, and othere.33-36

It is unclear to what extent any of the approximations here examined can

succeed in representing the dynamical effects of organized flow structures.

Certainly it is not expected that the explicit geometry of such structures in

physical space can be inferred from any description limited to low order

3“~ But it may be hopedmoments or other low-order statistical descriptors.

that the essential effects of structures on energy and momentum transport

and other averaged properties of the flow can be captured

approximation.

[t is of particular interest to assess what order of improvement

expected

2nd-order

are first

level of

Sec. 4,

certain

from analytical approximations above the prf,aently studied

to fair

can be

level of

renormalized perturbation theory. Certain features of turbulence

captured at the level of 4th-order pertu!’bation theory, or at the

constraints involving 4th-order momenta in the decimation method of

These include intermittence effects, posa ble force-free ordering,38

effects of helicity on turbulent diffuaim39~40 and, in magneto-

hydrodynamics, negative diffusivity effecte.39

The mmt straight-forward approximations exarlined in this paper are the

moment-related ones described at the end of Sec, 2, They are guaranteed to

converge, What then ia the motivation for examining more compl~x and

uncertair approximation methods like renormalized perturbation theory,

decimation, and the renormalization group? Fi~lt it should be said that the
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simple moment-related approximations may deserve deeper exploration than

they have had. But the complex approaches offer the possibility of more

faithful representation of the physics at a given level of approximation. They

all involve probing of the dynamics by examination of the effects of

perturbations. This is a powerful tool.
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2. MOfVENT APPROXIMATIONS AND REALIZABILITY

Consider the evolution in time of an incompressible velocity field which

obeys cyclic boundary conditions and has an isotropic, spatially homogeneous

Gaussian statistical distribution at time t = O. Problems of existence of

soiutions of the N-S equation can be sidestepped, and the number of degrees

of freedom made finite, if the fieid and the N-S equation are expressed in

terms of wavevector amp1itude8 and truncated at some cutoff wavenumber

kmax. If this cannot be done without destroying the physics, then the validity

of the N-S equation itself is questionable. The evolution prohiem can be

made wholiy finite by replacing the N-S equation with a finite-difference

form and evacuating the amplitude’; oniy at the discrete times ts.

The initiai and evolved joint probability density (JPD) for the surviving

and discretized Fourier amplitudes can be represented by the set of ail

moments. 13asic questions ara what comprises sufficient conditions for

completeness of this representation and how to constru~t convergent

approximation sequences which invoive only finite sets of moments. Consider

the space in which the independent reai and imaginary parts of the Fourier

amplitudes of all the surviving modes are Cartesian coordinates. Let these

amplitudes be represented by the vector y with components yi(ts), where i is

associated with some l-dimensional ordering of the Fourier amplitudes. The

sufficient condition for compieteneaa of moment representation is that the

JPD fail off exponentially or faster at infinity aiong any direction in this

space,’

If this condition is violated, as it may be for a physically interesting JPD

that is suffirientiy intermittent, a compiete representation can stiil be built

from weighted moments, defined as foliowo. If p(y) ia the normalized JPD, a

qenerai moment then has the form
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where ~ &... represent particular values of the index

weighted moment can be defined by

(yay&..)io= f(yay~..)w(y)dyk!y,

where ~y) is positive weight function. If p(y) vanishes

(2.1)

pair (i,s). A general

(2.2)

at infinity along any

ray, then exponential fal!off of u(y) in all directions is sufficient to insure

that the weighted moments are a complete representation.’

The existence of

that it is possible to

from finite sets of

expansion of the JPD

is the well-behaved

cumulants grow like

theory obtained by

a complete moment representation of the JPD implies

form converging sequences of approximants constructed

moments. There are pitfalls in doing this. Thus the

into cumulants is nonconvergent in general. An example

l-dimensional density

(2n)!. [The ‘mphysical

the approximation of

f)(x) = (zm)-1/Zxz exp(-x2/2), whose

results in isotropic turbulence

setting ‘,Lh-order cumulants to

zero4?5 are apart from the convergence difficulty at high orders.]

One way of constructing convergent approximants to p(y) from finite sets

of its moments is by the orthogonal expenaion

PM(Y) = w(y) fd bnpn(y)t
j=o

where the pn(y) are a complete set of polynomials

(2.3)

In the yi(tg), orthonormal

with respect to the positive weight w(y) and placed in some l-dimensional

order. The bn are fixed by

bn z
()
pn(y) (2.4)

and Involve the values of rnoment.a only up to the order of pn. The

approxlmerlt.~ converge In mean square aa M + 00 if flp(y)]?w(y)]-ldy exlsta, If
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the moments are complete, this condition can be satisfied with a ~(y) which

fails off exponentially, and thereby has a set of pn which are complete. In

this case the mean square convergence of the approximanta is to p(y). If p(y)

falls off so slowly that its moments are incomplete, then the expansion (2.3)

can be replaced by a similar expansion for [W(y]l’zp(y) and convergent to

dy) in mean square we constructed from finite sets of weighted moments.’

When p(y) is represented by its moments, it is important to express the

condition that o(y) be positive everywhere. Obvious neccmary conditions are

the infinite set of moment inequalities

(’pn(y)’z) 2 ‘7
(2.5)

where Pn is any real polynomial, If the moments are a complete

representation, (2.5) is aloo sufficient. The finite approximants PM(Y) satisfy

(2.5) Im to a finite degree of polynomial, but in general are not positive

everywhere. Also, it should be noted that satisfaction of (2.5) for alI pn(y)

whose degree is x J, does not assure that every positive real polynomial of

degree 2J has a positive average over PM; some positive polynomials are not

expressible as sums of squares of lower-degree polynomials.

moments are incomplete, (2.5) is replaced by corresponding

weighted momenta.’

Con8ider now the construction and momont representation

If the ordinary

inequalities for

of

approximately satisflea the N-S equation. let the discretlzed

latter be represented by

a JPD which

form of the

Lls(y) = 0. (2.6)

Li8(y) is a 2nd-degree polynomial. Thus the mean-square of the N-S equation

([L,& y)]2) = O (2.7)
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may be considered a limiting case (equality) of one of the rdatiom (2.5). If

all the relationa (2.5) are sati8fied, and (2.5) i8 sufficient for realizability,

then the entire moment-equation hierarchy

(pn(Y)~i*(Y)) = O

follows from (2.7) by virtue of Schwarz’ inequality

)‘p (y)Li8(y))2s ([~n(y)]2)([Li3(y)]2.\n

Pn(y) here is any polynomial.

If (2.7) is 8atisfied and any equation in the hierarchy

(2.8)

(2.8) is not, then

the moments represent a JPD which i8 not positive-definite. It can be shown

that the entire hierarchy (2.6) in fact represents a subset of (2.5), specialized

to polynomials Li~(Y) + ISPn(y), with 6 infinite8imal.7 Any approximate set of

moments which satisfies (2.8) for all first and second degree po1ynomia18 Pn

satisfies (2.5), since Li~ is of 2nd degree. Therefore such an approximation

either is an exact solution of the entire hierarchy or cannot be realized.

The existence in general of converging moment-based approximant8 to

JPO’8 8ugge8t8 that it should be po8sib1e to construct converging moment-

based approximants to enaemblea of solutions of (2.6). One way to seek such

approximants is by Calerkin methods: u8e the representation (2.3) in a sub8et

of the hierarchy (2.8) large enough to fix the bn and aaaert a subset of the

realizability conditions (2.5) which grows with M. Convergence is not totally

asaured by the general convergence of the PM(Y). It is a180 required that the

exact 0(y) to which convergence i8 8ought have certain atabili ty propertlea

under small perturbations of (2.6).7

An alternative way of con8til,lcting approximant8 which have as8ured

convergence, and automatically 8atisfy (2.5), is the following. Write
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and expand $M(y) in the form

(2.9)

Then Pkl(y) is positive-definite and (2.7) is sufficient to ensure satisfaction of

(2.6) in all but zero-measure set of the realizations that comprise the

ensemble. The left side of (2.7) is a quadratic form in the Cn. The latter

may then be determined ariationally in order to minimize some positive

linear sum taken over (2.7) for au i and s, subject to whatever other

constraints (far example, initial conditions) may be appropriate. 10

The Cn in (2.9) do not have a relation to moment values as simple as

that for the bn in (2.3). Another scheme which produces converging

approximants to exact solution .3PD’s, and automatically satisfies realizability

inequalities, is a variational procedure based on the truncated expansion of

the yi(tn) in powers of Gaussian random processes (many-time Wiener-l+ ermite

expansion). The coefficients of this expansion again determine the moments,

but according to a still more complicated structure.8-10

Approximation based on (2.3) or (2.9) appear to have been little explored

and may deserve further study. The rates of convergence are

it is plausible that the order of approximation required for

stays finite as Reynolds number becomes infinite.

not known, but

given accuracy



3. RENORMALIZED PERTURBATION

A formal solutiun for the time

THEORY

evolution of the wavevector amplitudes

ui(kjt) of the velocity field may be developed by straightforward

perturbation-iteration treatment of the Navier-S tokes equation. Let u?(k,t) be

the solution of the linear problem posed by striking out

of the N-S equation, and let G“”(lqt,t’) be the Green’s orlJ

the linearized equation. Then

the nonlinear terms

response function of

u~(k,t) = u~(k3t’)Gij(k; t,t’), G?j(k; t,t’) = 6ijGo(k; t,t’)$ (3.1)

where

G“(k;t,t’) = exti - vk2(t - t’)] (3.2)

and v is kinematic viscosity. Then the reintroduction and iteration of the

nonlinear terms yields ui(k}t) as a functional power series in all the initial

values Ui(P$O) = u~(ptO) and zeroth-order response scalars GO(p;sjs’).

Assume that the initial state is homogeneous, isotropic, and multivariate

Gaussian. The power-series expansion together with well-known reduction

rules for Gaussian moments yields a formal expression for any moment of

the evolved wavevector amplitudes as a functional power series in the Go

and the defining scalars U“(p; t,t’) of the zeroth-order 2-time covariances.

Also, similar expressions may be obtained for the Green’s functions that

measure the ensemble-averaged response of the full N-S equation to

infinitesimal perturbations. In particular, thi~ may be done for the defining

scalar U(k; t,t’) of the covariance of the exact amplitude ul(k,t) and for the

deflrdng scalar G(k;t,t’) of the averege response tensor for a statistically

sharp perturbation of a si~~gle Fourier mode.

Renormalization of these primitive perturbation series is motivated by the
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plausible argument that the actual covariance scalar U(k;t,t’) and actual

response scalar G(k; t, t’) are more

quantities. The primitive expansion

Reynolds number, which is not a

physically relevant than the zeroth-order

is essentially an expansion in powers of

small number in most cases of interest.

!-luwever, straightforward truncat ions of the pri mitive expansion can give

surprisingly good results for the initial-period evolution. 41,42

can be carried out by a variety of methods. 11-17 The

summation cf diagrams (classes of terms in the primitive

Perhaps more flexible is term-by-term reversion of the

Renormalization

best known is

expan8ion).11-13

expressions for

I.J(k;t, t’) and G(k;t,t’) as functional power series in the @ and G“.17$43 This

yields Un(k; t,t) and GO(k;t,t’) as functional power series in the exact U and

G. In turn these last series can be 8ub8tituted into the primitive expansion

for any moment of the exact Fourier ampl! tudns to yield a reworked

expansion in which appear only the exact U and G. These reworked

expansions for all moments cons~itute

perturbation apparatus.

Approximants to U and G may be

ronormali zed expansions for those moments

the complete ilne-ronormalized

constructed by truncating the

which,

hierarchy equation8, express the time derivatives of

hierarchy yie1d8

(~/ at + vk2)U(k;t,t’) = S(k;t,t’),

according to the moment

U(k; t,t’) and G(k; t,t’? The

(2/ at + vk2)G(k;t,t’) = H(k;t,t’), (3.3)

where S is a triple moment expression and H involves the covarlance of a

mode ampll tude with an unaveraged response tcmsor, The leading term In the

renormalized expansion for S hae the structure GUU, Thu’ ie, It Is a time

and wavevector Imegral over an Integrand containing geometric factora, one
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G function factor and two U function factors. The higher terms have the

structures GGGUUU, GGGGGUUUU, etc. The terms in the expanaion for H

have the structures GW, GGGGUU, GGGGGGUUU, etc.11

If the renormaliznd expansions for H and S are truncated at some order,

the result is closed integrodifferential equations for G and U. There is no

reason to believe that successive approximants constructed in this manner

converge. In fact, there is evidence to the contrary from model problems. If

extrapolation from few-mode bilinear systems is valid, both the primitive and

the renormalized perturbation expansions have zero radius of convergence

either in t or in the strength of the nonlinearity (that is, in Reynolds

number). In a 3-mode bilinear system, the radius of convergence in a typical

realization is finite, and the averaging over the Gaussian initial conditions

yields zero radius of convergence for the moment =Xpansions.44 The

divergence of the renormalized expaneion appears not less sever at high
4

orders than thet of the primitive expansion. !n fact it is more dangerous,

because the renormalized expnnslons are u863d via (3.3) to form a closed

system, Padt! methods and other acceleration techniques may help with the

co$~ergence problems for both primitive and renormalized expanelom, but the

results me uncertain.43~45

If H and S me consistently truncated at

the resulting approximant formally conserves

any order (the came for both),

energy tranafor by nonllnearlty,

in accord with the exact dynamics, and If v = O it give8 formal ab801ute

equilibrium dlntributlons which obey detailed balance and ylald the

flue/,uatiOn-di88ipatiOn relations of the exact dynamical 1

The lowest truncation
f

terms in T, Substitution

interaction approximation

retains only the GGU

of the Iwsult htO (3.3)

(DIA), which has specla!

terms In H nnd the GUU

yleid8 the tm-tailed direct-

propertlm, The DIA cnn be



obtained, in two separate ways, a8 an exact consequence of certain model

amplitude equations, independently of the perturbation and renormalization

analysis. These model rapresentationa show that the approximation is aelf-

consistent in the sense that U(k;t, t’) obeys the 2nd-order realizability

inequalities, h particular, U(k; t,t) is non-negative. This property, together

with energy conservation, is sufficient to amure that there exist healthy

solutions to the DIA equations. In contrast, it is known from examples that

solutions for higher truncation of the expansions of H and S can blow up

catastrophically.

The fundamental dynamical model underlying DIA is obtained by

randomizing in a particular way the coefficients m the N-S equatione which

describe interactions of individual mode triada.11 The alternative model is a

generalized Langev!n equation:45

( ~/3t + ~kz)ui(k,t) + ~Ot ~(k; t,8)ui(k,s) + bi(k,t) = fi(k,t). (3.4)

Here the dynamical damping rl(k;t,s) is statistically sharp and has the

atructuro GU, whila bi(k~t) is a random internal force, with Gaussian

statlstlcs, and fi(k,t) Is ~ possible external force. The model is cloaec! by

requirlnq that the 2-time covariance of bl(k,t) be Identical with that of the

total nonlinear term In the N-S equation for ul(k,t), under the asaumptlon

that the Fourier amplitudes uj(q,t), which appear In the nonlinear term, are

exactly statlatlcally independent. Thereby the covariance of bl haa the

structure UU, The DIA equatlona for G and U follow immediately from (3.4)

if G is Identified with the reepome scalar of (3,4),

The DIA givec reasonably accurate predlctiona of the decay of Isotropic

turbulence at moderale Roynol& numbers, Including eat18factory predictions

for 2-time quantlt!es. 46~47 It has aleo had ouccem In some plasma and
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48$49 in turbulent diffusio~50~36magneto-hydrodynamics (MHD) applications,

in anisotropic homogeneous turbulence,51 and in Bouminesq convection. 52

Applications to shear flows and t.u convection at lower Prandtl numbers are

being developed.53-55

If applied to high-Reynolds-number turbulence, the DIA equations exhibi t

a failing, of broad impact in analytical turbulence theory, associated with the

56 This problem arises in ainteraction of strongly disparate wavenumbers.

somewhat subtle way from the renormalization; it does not afflict truncations

of the primitive perturbation expansion. The origin of the difficulty is the

separation between the characteristic time Td(k) fOr distortion of features

with characteristic wavenumber k, and the time ~c(k) for decorrelat!on of

the amplitude ui(k,t) due to convection of the features by the total velocity

field, In a Kolmogorov inertial range, 7C - l/(vok), where V. Is the rms value

of the total velocity component in any direction, while Td(k) - l/(c l/3k2/3),

where c is the energy dissipation rate per unit mass. The ratio is

~c(k)/~d(k) - (ko/k)l’3, where k.

energy-containing range. In the

U(k:t, t’) as a function of t - t’,

CXA energy balance equation,

is the characteristic wavenumber of the

exact dynamics, ~c(k) is the decay tl~ne of

and this Is also true in DIA. However, the

obtained from (3.3) at t = t’, et’fectively

substitutes this convective dephasing time for the proper Intrinsic distortion

time Td. The reoult la a deprean{on of energy transfer and a change of the

Kolmogorov epectrum law from -5/3 to -3/2, (In some MHD applications, this

trouble does not arlae.57)

Error from the ~unfuaion of convection and distortion times persists in

every order of the Ilne-renormalized expanolom for S. It also

numerically reduced, In every order of expansions where line

18 augmented by vert~x renormullzatlon,56

persists, but Is

renormalization
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The distinction between convection and distortion times can be expressed

formally by the property of invariance under random Galilean transformation

(RGT).58 Suppose that the turbulent velocity field is augmented by a

spatially uniform velocity which varies randomly over the realizations of the

ensemble and has zero mean. The Galilean invariance of the N-S equations

insures that stretching and other distortion effects are unaffected by the

uniform convection. This is expressed mathematically by the invariance of

~ui(~lt)uj(p,t’) um(q,t”) ,moments ul~der RGT. In particular the triple moment
)

with k+p+q = O is invariant. Any finite truncation of the renormalized

expansion for this moment, however, is not invariant, because the

correlations among the phase changes induced in the three factors by the

RGT are lost.

The underlying physical problem with the renormalizerl expansion, as it

has been formulated, is that the distortion time Td(k) has no simple

expression in terms of Eulerian 2-time quantities. But it arises naturally In a

Lagrangian representation, where convective effects of large scales are

transformed away. The entire Iine-renormalized appar~tus can !M recast into

a form wherl~ Lagrangian as well as Eulerlatl 2-time correlatlona enter in a

fundamental way. 59)17 The reworked expansion Is properly invariant under

RGT in every order. The lowest truncation of this expansion yields the so-

called Lagrangian-hlotory DiA (LHDIA) in which the convection difficulty

dlsappeam, and th8 -5/3 Kolmogorov spectrum Is recovered, An abridqed

version (ALH~A) ylelcjs excellent absolute agreement with measured lnertial-

range and dlsslpatlon-range spectre, normalized by c and V.59 The

Improvement over DIA Is gained at a cost In complication and at the loss of

the exact model representation. (But see the work of Kaneda. 60,61;

The LHDI and ALHDI approximations have yielded good qualitative physics
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in a variety of situations: the k-5/3

the log-corrected k-3 range in 20

ranges in turbulent convection of a

‘2 shock-domin~tedrange, and the k

inertial range in 30 and 2D turbulence?

turbulence, the k ‘5/3, k-l, and k-17/3

-3/2 MHD inertialpaaaive scalar, the k

range for 13urgeP9 equation. 57,59,62-65

The predicted cascade rate in the k-5’3 and k-i scalar ranges and the 2D

k-3 range is probably too high by a factor of 2 or 3. An alternate version of

I-HOI haa been constructed from Lagrangian reverted series which are based

on the strain field rather than the velocity field as the fundamental

Lagrangian construct. 66’67 This has yielded numerical constants for the three

last-named range8 in fairly good agreement with experiment, without

sacrificing agreement in the 30 k-5’3 Kolmogorov range.

The RGT-invariant Lagrangian form of renormalized perturbation theory is

most naturally based on

defined as the velocity

traject~ry pusses thro(jgh

the generalized x-space velocity field ul(x,t Is),

measured at time s in the fluid element whose

the spacetime point (x,t). 58 The ordinary Eulerian

velocity is ui(x,t It), while ui(x, tfl It) as o function of t is the l.agrangian

veluclty of a fluid element tagged at ~ime ‘... T4e full evo!utirm of ul(x,t la)

Is fixed by the N-S equation together with n passive advection equation

which determines the t

Pu (xtt Io) are Independent

covarlancea and Green’s

dependence at fixed o. The linearized solutlorm

of a. Thlo m~~kes It puaaible to revert the series for

flmctlons to express the zerotkorder functions in

terms of tho exact Lagranglan covarlances and

EulerIan functlona, The result Is a r ~worklnq of

for momenta, In particular triple moment4, 00

Green’s functions Instead of

the renormallzed expansions

that Integrations over time

hlatorlee are back alonq fluld-element trajectorle~, Instead

coordinate poaltlom. 17 The taqqin~~ time Of the trOj0CtOrle8

upd~ted.

of at fixed

Is continually
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4. OECIMATION LNtXR SYMMETRY CONSTRAINTS

The use of statistical description carries an implicit appeal to redundancy.

A system with N degrees of freedom sampled at T time steps In R

realization is described In full detail by NTR numbsrs. A full statistical

description by moments up to order M require8 the order of (NT)”/M!

numbers. The stati8t icai description i8 prohibitively bulky at large NT and

moderate M unless the momenta change S1OW!Yand smoothly with change of

mode label and time. If the change i8 slow, it i8 8ufficient to 8pecify the

moment8 fcr a relatively small set of strategically chosen modes. This is an

exploitat~on of statistical redundancy (8tathNical symmetry) within cla88ea of

mode8. Such symmetry certainly characterize homogeneous turbulence in a

large cyclic box, where the Fourier modes are dense and neighboring mode8

are statistically 8imilar.

Statistical symmetries can be exploited in a 8y8tematic way to yield

equation8 of motion for a reduced 8et of modes, the explicit set, which are

sufficient to characterize the entire 8y8tem. The re8t of the model (implicit

modes) are repreaonted by a constrained 8tOCha8tiC forcing in the equation8

for the expllcit mode8. Th18 18 a forcing di8tlnct from any external forcing,

The con8treints are expression of the underlying 8ta2!8t\cal 8ymmetrlee; they

relate moment8 of the impiiclt m0de8, and thereby moment8 of the

8toche8tic forcing, to moment8 of the explicit mode8. Th18 piocedure, which

will be termed decimation under 8ymmetry conatreints (DSC),7 turn8 out to

I}ave deep connection with renormali zed perturbation theory (RPT) and

renormgllzatl on-group (RNG) approache8$ 88 we!i a8 with the moment

hierarchy of Sec. 2,

The qoner,~l structure of the equation8 of motion for the oxpllcit modes Is

readily found. In the not atlon of Sec, 2, the N-S equatlcn has the form
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(~/~t + v])yi(t) + ~jm Aijmyj(t)ym(t) = f](t). (4.1)

Here the yi(t) are independent real and imaginary parts of the Fourier

arnpli tudes (or more generaliy some modal representation), vi represents

damping by viscosity, the Aijm are the coefficients of the wavevector triad

interactions, and fi(t) is a possibie external force. Let ys(t) represent the

explicit subset of y(t) and write the equation of motion for y:(t) as

(a/at +

Here $rn denotes a

vi)y~(t)+ )’~mAijmy~(t)y~(t)

sum restricted to j and m

+ qi(t) = fi(t). (4.2)

both in the explicit subset,

and the effects of the impiicit modes are represented by

where ~’jm denotes a

subset.

The function qi(t)

qi(t) = qf(t)~ f
jm ‘ijmt j(t)ym(t), (4.3)

sum restricted to either j or m or both in the implicit

is now to be written as a stochastic forcinq term which

expre=es statistically the effect~ of the impiicit modes. 1: comprises a

primary contribution hi(t), which ia the value of q~(t) with all the explicit

amplitudes c!amped to zero in the equatiom of motion for the implicit

modes, In addition, there i8 an infinite series of contributions which express

the change in q}(t) induced by the actuai nonzero valuea of

amplitudes. Thue7

qi(t) = hi(t) + jOt d8qlj(t,8)y~(s) + JOt de){Ot ds’ yijm(t,a,d)y~(8 )y~(s’)

where

hi(t) = [q~(t)$, nijh,d = @MSy~(d$,

Yllm(t,g) = [62q~(t)/6y~(s)5y~(St)bt.s. .

the expiicit

+ ..,, (4.4)

(4.5)
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s = O. The functions b,(t), rjj(t,a),and [ $ denotes a value taken at y

Yijm(t,s,9’),... are stochastic, with nonzero means and nonGausaian statlotlca in

general. In the presmnt case of isotropic homogeneous turbulence, bl(t) has

zero mean. The hi(t) for distinct i are not statiaticdly Independent in

general.

Eqs. (4.2)-(4.5) are a general

physics depending on how the

formalism which can expreea a variety of

explicit set is chosen. The convergence

properties of the form~ ?xpansion (4.4), with exact values (4.5) inserted, are

not known. A sequence of approximation wII1 now be outlined which

plausibly are convergent and are associated with fln!te truncations of (4.4),

but with approximate values of bl(t), qlj(t,a), . .. .

The assumption that statletlcai symmetries relate the Impllclt set to the

expllcit sat implies that all mcmente of q and ys can be expreeaed in terms

of moments of y s alone. Thus

(q,(t)y;(t’)y:(t”)) =

where M~(t, t’)
1

la a triple moment

(: t’,t”), .m. ,@jmt (4.6)

of the expllclt amplltl~dea alone,

Ms (t t’, t”) 18 a 4thorder moment of the expllclt amplltudee alone, ,.. . ThisIjm P

followo from the fact that ql(t) 18 quadratic In the mode amplltudee. Eqe.

(4.6) ars an Inflnlte set of moment relatlme. They are not members of the

moment hierarchy (2.8) but Instead merely express the aaaumed atatlatlcal

redundancy between expllclt and Impllclt modeo. There &re also oymmetry

conotrainta for momenta of hiqhcr order in q. The 2nd-order ~equence Is

(ql(t)q,(t’)) ❑ N~l(t,i’), . .. , (4.7)

where N~J(t, t’) 1s a 4th-order moment of the expllclt amplltudee alone, The



higher membem of this sequemce involve y factors in the left-side average%

Now suppose that the suquences (4.6), (4.7), . . . are truncated so that only

a finite number of the symmetry constraints are impomd. For a concrete

example, suppose that tho only constraints imposed are the first two of Eqs.

(4.6). Then the random process qi(t) is not uniquely deterinined by the

constraints and initial statistics. Among the aolutiona is of course the exact

solution, since the immaed constraints are a subset of exact constraints. The

ambiguity may be resolved by seeking a leGst-squares solution under the

subset of symmetry constrain~~ together with the initial conditions and an

appropriate subset of realizability inequalities. The initiol conditions are

simply

qi(o) = ql(o) (4.8)

and the statistics of q~(0) follow trivially from the assumed Gaussian

statistics of the y;(0).

A Ieaot-squares solution that satisfies the first twc equations of (4.6)

must project on y~(s)o [n order tc also satisfy (4.8) it must in addition have

a pqrt which initially is statistically independent of y~(0). One is led to infer

that the leaat-8quarea solution has the form of (4.4) truncated to the first

two terms on the right aide. Slmllarly, if more of the symmetry conatralnts

are impoeed, one Is led to Infer that the leaat-aquarea form for qi(t) is a

higher

All

modeo

truncotlon of (4.4).

the symmetry con8tralnt8 plus the equatiow of motion for the explicit

imply the full moment hierarchy (2.8) for the total set of modes,

implicit and expllcit. 7 This follow8 from simple substitution. Then solution of

the equntiorm of motion for the expliclt modes under nuccetmlve!y larger eets

of the symmetry constraints Impllea that successively more of the hierarchy



22

equations for the total system are satisfied. As noted in Sec. 2, if an

enlarging set of realizability inequalities are

statistical solutions have certain stability

approximations converge to an exact solution.

also satisfied, and if the exact

properties, then the resulting

Realizability inequalities that involve the explicit modes alone are

automatically satisfied, because actual amplitudes arc evolved. But because

of weighings built into the symmetry constraints, realizability inequali ties

that involve the impllcit modes are not automatically satisfied in general.

This complicates the construction of successive approximations and can

complicate the form of the Ieast.-s:uares solutions for the qi[t).

The approximations outlined above are nonperturbative. But there is a

limit in which they can he analy zad accurately by perturbation methcds.

from each neighborhood in

is introduced, the ratio of

Suppose that the modes are dense in wavevector space and that the explicit

set is formed by choosing a few sampie modes

wavevector Spacew A small parameter thereby

sample size to total neighborhood population. Consider the limit where this

ratio goes to zero (strong decimation). ThQ Is sum in (4.2) then is

infinitesimal compared to qi(t) and may be treated perturbatively. If this Is

done for the ioweat-order leaet-equme8 approximate ion described above,

namely with the flrnt two equations of (4.6) taken as the only symmetry

conatrainta, the reeult ie precisely the direct-interaction approximation in the

form (3.4).7 [The 2nd of

conservation in the mean

imbedcled in a sequence

succeeeively more symmetry constraints and cormequently eatiafying

succea8ively more of the hierarchy equationa, In thie way the (XC approach

II nke renormalized perturbation theory to the moment approximations of Sec.

equations (4.6) taken at t = t’ enforces energy

by the nonlinear dynamics,] Thereby OIA is

of approximation corresponding to taking
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A strong-decimation llmit may also be constructed for systems with finite

numbers of modes by the device of considering an infinite collection of such

systems and performing the manipulations on suitably constructed collective

coordinate. 7

In the strong-decimation llmi~ the higher DSC approximations again may

be treated perturbatively. But in contrast to higher tr~cations of line or

vertex renormalized perturbation expansions, the present approximation are

expected to converge. It should be noted that the yijm(t, t’, t”) term in (4.4),

the next term beyond the DIA level, is a vertex correction term in the

language of renormalized field theory.

A different way to form the expliclt set 18 to put into it all modes with

wavenumbers Iesa than some cutoff wavenumber and put all the modes above

the cutoff into the

extrapolation formulas

terms of moments of

implicit 9et. The symmetry cormtrainta now are

which express moments of modes above the cutoff In

the explicit modes. The truncations of (4.4) associated

with least-squares solution under successively more symmetry constraints then

fOrm a sequence of subgrid-ecale repreeentatlo~. Some techn~queafor

reallzing the Ieaat-equarm $olutiom in this kind of nonperturbative sltuatlon

have been deacrlbed.’

The problem of nonlnvariance undar random Galllem tranaform,atlon which

affllcts EulerIan RPT (see Sec. 3) can be handled in

without the need for Lagrallyian represent aticm. Thle Is

amplltuden of the expllclt Bet ~f modes are followed.

the 13SC noproach

because the actual

!! wao noted above

that the Impooltlon of Just the flint

led, In ths strong decimation Ilmlt, to

If the third of the Conatralnta (4.6)

two of the eymmet.ry constrelnte (4.6)

DIA, which 18 nonlnvariant under RGT.

Is aleo Impoeed, the resulting vertex



24

correction terms in the least-squares solution precisely counteract the

spuriom decay of triple correlations in DIA and restore invariance. 7

The consistent imposition of all symmetry constraints and realizability

inequalities associated with up to 4th-order moments of the explicit

amplitudes is of particular interest, because it implies that the fundamental

equation (2.7) is satisfied. The relevant ccinstraints are the first three

equations of (4.6) and the first equation of (4.7).
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5. RENORMALIZATION-~ OLP APPROACHES

A variety of analytical approaches have been made to the problem ~f

eliminating the modes above some

citation will not be attempted here.

an exact formal solution in terms of

explicit field (k < kc).68 They

constructed so as to have desired

The elimination problem has

cutoff wavenumber kc. Comprehensive

Lindenberg and West have written down

time-ordered exponential built from the

then study a perturbative approximation

fluctuation-dissipation properties.

also been studied by renormalization-group

(RNG) methods.18-20~24 -31 The treatments so far worked out explicitly have

involved rather drastic approximations. A distant eddy viscosity plays a

central role in the lowest approximation to the theory of Yakhot and

0rszag.30’31 It may be defined as the eddy viscosity exerted by modes of

wavenumber k > kc on modes k << kc. An effective extrapolation from the

form of this distant eddy viscosity yields in a self-consistent way the total

30-32 A description ofeddy viscosity felt by a mode in the inertial range.

this approximation and its relation to the full Yakhot-Orszag theory is given

by Dr. YakhoL in :hese Proceedings. 69 Yakhot and Orszag have obtained good

predictions of the Kolmogoroi conttant and other inertial-range parameters.

They have successfully applied the inertial-range eddy-viscosity formuias to a

calculation of the von Karman constant and to detailed numerical

calculations of shear-flow behavior.30

The discussion of RNG methods to follow here 1s not primarily concerned

with present applications. Instead, it offers some rather Procrustean

speculations on modifications suggested by the nature of the higher RNG

approximations. Three principal techniques have been used in the RNG

treatment of small scales. The first is elimination of successive thin 8hells In

WaVbnUnlbOr apace, starting with the h;ghest wavenumhws, instead of
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elimination of the modes k > kc all at once. The second 18 the use rf

primitive or renormalized perturbation treatment of the N-S equation,

effectively like that of Sec. 3, to accomplish the elimination of each band.

The third is the c-expansion: The treatment of the Kolmogorov inertial range

with energy spectrum E(k) = k-5’3 starts with the analysis of a spectrum

E(k) = kl-2e’3. The Kolmogorov range is then recovered by an power series

expansion in c about c = O; the -5/3 8peCtrum COrre8pOnd8 tO e = 4.30

Alternatively, thh may be regarded as an expansion about dynamics for space

dimenoionality D = 17/3, wi+h the modal intensity U(k) [U(k) = E(k)/2rk2 for

D = 3] held fixed at the Koimugorov dependence U(k) a k-11’3. The approach

of Yakho! and orazag envisages approximation sequences based on

simultaneous ancl coordinated inclusion of successively higher perturbation-

theory contributions md successively higher terms in the c expansion. 30,31

Any sequence of approximations which converges to .?xact elimination of

the modes k > kc must yieid, in the iimit, I cnorma!ized equations of motion

for the explicit modee which are at least formally equivalent to (4,2) with

(4.4). The infinite series expansion (4.4) muy not converge, but basic features

expressed by it characterize the exact qi(t). Thus the exact qi(t) exhibits

contributions from all expiicit wavevectora and integrations over past history.

It must be assumed that qi(t) i8 a complicated nonalgebraic stochastic

f’mctional of aii the explicit mode amplitudes, moat likely not eXpre88ible in

cioaed form by any known tooia.

It seems Iikei y to the present author that some recasting of RNG

approached is tailed for if they are to yield phy8icai1y natural higher

approximants that converge to the exact qi(t), Fundamental questiom arise

around both the concept of fixed point’ and the process of successive

elimination of thin Oheiis. As RNG methods have been applied to turbulence
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so far, they aasume an underlying power-law spectrum which extende over an

infinite ratio in wavenumber. The fixed point which ia sought is an invariant

behavior, under succeaaive band eli minatione, of the aui tabl y resealed

dynamical damping exerted by all the eliminated modes on modes with very

small wavenumber. If higher approxirnatione are to be analyzed, this concept

of fixed point naturally enlarges to that of invariant behavior of all the

(suitably resealed) stochastic functione hi(t), ~j(t,s), ~jm(t,s,s’) which enter

(4.4). The dynamic damping exerted on very small wovenumbera is expreaaed

by the k <<kc limit of ~j(t,s). What scaling 1s actually correct cannot be

assumed in advance. Successive approximations may force a deviation from

the -5/3 law.

The fundamental problem with the fixed-point concept is not that it must

be enlarged but rather that it may be eubatantially Irrelevant. Actual

turbulent flows have finite Reynolds numbers. Even in an infinite inertial

range, the really interesting behavior involves semicoherent flow structures,

intermittence, and ether deviations from the clamical Kolmogorov -5/3

scaling. It is Ilkely that these effects are dominated by dynamical

interactions among wavevector triads with finite wavonumber ratios, rather

than by coherence effect~ that extend over infinite wavenumber ratios. 26 If

this la SO, then the Intersstlng dynamics of the infinite Inertial range are

Ineeaentltilly different from thbde of turbulent flows with finite wavenumber

ranges. In both cawn, It 1s the structure within a finite range that 1s

Important, If that structure were well enough portrayed, then the chalnlng of

finite ranges to yield an Infinite Inertial range would be a Ieaaer and

secondary task.

Suppoue that the fixed-point apparatus were ellrrdnated and It were

dealred to construct a formallam tnat eppllea equally to flnlte aa well ae
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infinite Reynolds numbers. The remaining parts of the RNG approach would

be the successive band elimination and the c expansion. The relevance of

elimination of infinitesimal shells is also questionable in higher

approximations. The natural shell thickness is a range in wavenumber over

which there extend dynamically significant correlations. At finite Reynolds

number the entire spectrum may f811 within one such shell. In a infinite

inertial range it is unlikely this natural sheil thickness is less than a decade

in wavenumber.

At the lowest order of RNG treatment, an infinitesimally thick shell on

the brink of elimination is assumed to be statistically independent of the

currently explicit modes, Then the interaction with a mode of wavenumber

kl < kc is

incremental

shell with

perturbation

introduced and calculated perturbatively. The result is an

30 In this process, interaction of theeddy damping felt at kl.

expiicit modes kl c k < kc doee not appear. If now higher

orders are included,

sheil thickness begins to show.

8Dread over a bandwidth k~ In

interaction with

(cascade) time at

complicated to

A

aU modes kl <

the dynamical structure within the naturai

Aiready at 4th-order, excitation at kc is

the convection time ‘cc - (kl/kc)l/3Td by

k < kc. Here ~d ia the internal distortion

kc, The implication io that it is more appropriate and iem

elimlnate the entire natural shell at oncw instead of

artificially breaking it up into infiniteatimal ahello. This granted, it may be

simpler, and ae justified, to eiiminate ~ the implicit modes at one biow,

and not deal with shells at all.

In tiny event - thin ahelie, thick ohello, or no ehelia - the problems of

convergence of primitive and renormallzed perturbation aeriea arioe an they

do in Sec. % A gueMed at or oimply eutimated oimple eddy dampinq couid be
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introduced at the outset to accelerate convergence in low orders of the

approximation 8equence. The introduced eddy viscosity could be that

determined by the lowest order of the Yakhot-Orszag theory. 30 If this eddy

damping were added to the molecular damping and subtracted from the

nonlinear term of the N-S equation, it would automatically disappear as the

true dynamics were developed by successive approximation. No device of this

kind can bo expected to help significantly with convergence problems at high

ordera$4

The c expansion is the most mysterious and intriguing component of the

RNG arsenal. The combination of low orders of perturbation expansion and

low orders of c expansion has given good results in the study of critical

phenomena. The c expanaion in turbulence theory haa a problem of a priori

plausibility: elementary arguments give the E(k) = k spectrum, about which the

exparwion is based, EI substantiality different qualitative physics from that of

the Kolmogorov -5/3 spectrum. No clear counterbalancing arguments for the

validlty of c expansion have been stated.

It should be noted that the c expanaion logically need not be tied to the

band-elimination procedure, For example, the c expansion could be interlaced

w~th the EulerIan or Lagrangian renormallzed perturbation expanslone of Sec.

3, olnce the latter can be applled, at any order, to the kl-z ‘/3 spectrum. Or

it could be used in conjunction with the DSC approximations of Sec. 4,

If the attempt io made to remodel RNG to handle finite Reynolds

numbers, the c expanoion ao uoually stated becomes Iem plauoible, If lJ(k) is

kept fixed in form and dlmensionality changed to 17/3, the Inltlal opectrum

C(k) for a decay problem io radically changed, and there i8 little reaaon to

expect the qualitative phynlco to survive the change, However there la an

alternative procedure which doeo not have thio drawback nnd which may he
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interesting to study, %ppoae that dimension~li ty D is increased from D = 3

with E(k) rather than U(k) kept fixed. It may be that at a large enough

value Dcr [especially Dcr = =)70 the true dynamics and the perturb~Nion-

theory dynamics both simplify importantly. An expansion in powers of Dcr - D

(or 1/0) might be more ~ysically relevant than the original c expanaiom

Some remarks should be made about the relation of RNG approximation

to the problem of noninvar .ance under random Galilean transformatio~ which

afflicts Eulerian RPT. In the lowest order of RNG approximation the

effective eddy viscosity felt at k is found to have the physically expected

relation to the characteristic distortion time Id(k). This i8 in contra8t to the

predictions of Eulerian RPT, in particular OIA. However, as noted earlier,

tt,e effecte of intermediate Wavenumber8 do not appear in thi8 lowe8t order.

In higher orders of the Eulerian

analy81s, the effects of convection

They brlnq the dominant convection

perturbation theory used In the RNG

by intermediate wavenumber8 are larqe.

time Tc into the analysi8 of di~tant eddy

~iaco8ity. This is so whether the Kolmogorov 8pectrum is treated directly or

the c oxpansi on !s used In higher order8. The results wI1l depend very much

m how the perturbation treatment la developed. If primitive ordering of

perturbation termo 18 used, problems of random Galilean Invariance need not

arise.56 But other orderlnqs of perturbation term8 can give noninvarlance

effects 81milar to those encomtered by EulerIan RPT and de8crlbed In Sec.

3. In particular, thla problem can nffect the predicted localne88 In

wavenumber of energy ca8cade from explicit to implicit mode8.

In this connection, a fundamental difference between eddy vi8c081ty md

molecular VIIICOBI ty should be noted. Eddy VIIIC081ty can be mpreeentad by an

ebaolute equlllbrlum Incompreadble matlon W thermal veloclty on the 8patlal

71 The I_aqranglan md Eulerianscale of the molecular mean free path.
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correlation times of this motion are of the same order, and this equality is

unaffected by convection by the total hydrodynamic motion because the

latter has a velocity much smaller than thermal velocity. Thus the effects of

convection by intermediate hydrodynamic modes on the molecular vi9c08ity

felt at low k are negligible. In contrast, the velocity associated with the

inertial-range excitation above kc is small compared to the velocity in

intermediate modes at wavenumbers << kc, and the result is Lagrangian and

Eulerian correlation limes that scale differently with kc.

In summary, three suggestions have been offered concerning the

implementation of higher crders of RNG:

L Eliminate the implicit modes all at once instead of In successive

infinitesimally thick shells.

2. Introduce by hand a simple eddy

the ‘f’akhot-Orszag theory, in such

orders of perturbation theory.

3. Modify the c expansion so that

mode Intensity U(k) is held

dlmenoionality.

a

damping, like that of the ]Owest 0, dt3r of

way as to accelerate convergence in low

the enerqy spectrum Ek~ rather than the

fixed In form under change of space

With theee change% several methods of successive apprnxlmation could be

Interlocked with the t expansion. They Include the prlmitlve und renormallzed

perturbation expansions of Sec. 3, with or without convergence accelerators,

and the declmaclon approximatlona of Sec. 4.
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6. TI-E UPPER-f300JDING APPRCIACH OF EtUSSE, HOWARD, AND MALKUS

The upper-bounding theory for turbulent transport was first formulated by

Howard,34 after a germinal investigation by Malkua. 33 Latter dovolopment is

due to Buaae and others. 35 This approach deserves mention in any w.wvey of

analytical methods for turbulence

The latter are in the form of

momentum and heat, and they

materials. All that is used of the

becauee it uniquely gives rlgoroua reaulta.

upper bounds for turbulent transport of

are obtained with utmost economy of

N-S equatjons (or the 130ua8ineaq equations

for thermal convection) are certain exact integral properti ,~. The bounda are

found by extremalizing tramport with these properties as con8tralnta. Most of

the work has been restricted

Krommes and Smith have used

transport by passive advection, 36

in an infinite box seem to have

to single-time conatrainte, but recently

two-time constraint in a otudy of heat

No applicatlona to nomogeneoua turbulence

been reported, but Sulem and Frlsch have

developed bounds on energy flux and inertial-range power laws for turbulence

of flnlte energy, 72

There is a possibility that it may be feasible

extremallzing technlquea with the OSC approxlmatlona

This Is because the latter

oymmetry constralnta. In

constructing lea8t-0quare8

are obtained by imposing a

to combine ehnllar

outlined In Sec. 4,

aubeet of the exact

Sec. 4, approximate aolutiom were sought by

realizations of the otochaatic forclnq terms ql(t)

under the aubmet of symmetry constralnto, Instead, aolutiono could be oought

that maxlmlze or mlnlmlze chooen integral properties, ouch aa the total

dlwdpatlon by vlacoslty, or th~ total transport of energy through a given

spherical ourfac~ In the wavevector apnce, The DSC method 10 not llmlt~d to

homogeneous turbulence. In Inhomoqeneoua problama, tranaport could be

maxlmlzeri preclaely aa In the uppm-bounding theory.
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The remarkable succeea obtained with the upper-bomding theory using

very few integral constraints suggests that it may be profitable to examine

DSC approximations (with or without extremalizing) under broadly similar

constraint, rather than the detailed constraint that yield DIA. It may be

that integral constraints constructed from several orders of the set of

symmetry constraints will yield better results at lower computational cost

than detailed constraints confined to the first two orders of (4.6). Such

constraints logically would be chosen to expreaa overall conservation and

invariance properties.
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